Factorization and Palindromic Continued Fractions

نویسنده

  • Richard A. Mollin
چکیده

Abstract We provide elementary explanations in terms of palindromic continued fraction expansions for the factorization of integers of the form a2 + 1, including Fermat numbers and Cunningham project numbers. This provides a generalization and more complete explanation of the factorization of the sixth Fermat number given by Freeman Dyson at the turn of the century. This explanation may provide a new look at actually finding factorizations in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Interpolation and Some Continued Fractions

We prove: if d/m < 2280/721, there is no curve of degree d passing through n = 10 general points with multiplicity m in P. Similar results are given for other special values of n. Our bounds can be naturally written as certain palindromic continued fractions.

متن کامل

Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions

In this paper, we consider a general tridiagonal matrix and give the explicit formula for the elements of its inverse. For this purpose, considering usual continued fraction, we define backward continued fraction for a real number and give some basic results on backward continued fraction. We give the relationships between the usual and backward continued fractions. Then we reobtain the LU fact...

متن کامل

Maximal Palindromic Factorization

A palindrome is a symmetric string, phrase, number, or other sequence of units sequence that reads the same forward and backward. We present an algorithm for maximal palindromic factorization of a finite string by adapting an Gusfield algorithm [15] for detecting all occurrences of maximal palindromes in a string in linear time to the length of the given string then using the breadth first sear...

متن کامل

Greedy palindromic lengths

In [A. Frid, S. Puzynina, L.Q. Zamboni, On palindromic factorization of words, Adv. in Appl. Math. 50 (2013), 737-748], it was conjectured that any infinite word whose palindromic lengths of factors are bounded is ultimately periodic. We introduce variants of this conjecture and prove this conjecture in particular cases. Especially we introduce left and right greedy palindromic lengths. These l...

متن کامل

A subquadratic algorithm for minimum palindromic factorization

We give an O(n logn) time algorithm for factoring a string into the minimum number of palindromic substrings. That is, given a string S[1..n], in O(n logn) time our algorithm returns the minimum number of palindromes S1, . . . , Sl such that S = S1 · · ·Sl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013